

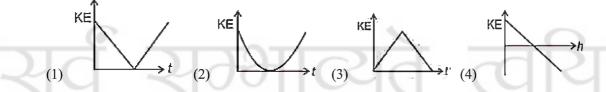
Instructions:

- (i) There are two sections in each subject, i.e. Section-A & Section-B. You have to attempt all 35 questions from Section-A & only 10 questions from Section-B out of 15.
- (ii) Each question carries 4 marks. For every wrong response 1 mark shall be deducted from the total score. Unanswered / unattempted questions will be given no marks.
- (iii) Use blue/black ballpoint pen only to darken the appropriate circle.
- (iv) Mark should be dark and completely fill the circle.
- (v) Dark only one circle for each entry.
- (vi) Dark the circle in the space provided only.
- (vii) Rough work must not be done on the Answer sheet and do not use white-fluid or any other rubbing material on the Answer sheet.

PHYSICS

SECTION-A

Choose the correct answer:


1. Identify the vector quantity among the following

(1) Distance (2) Heat (3) Angular momentum (4) Energy

2. Distance travelled by a particle starting form rest and moving with an acceleration of $\frac{4}{2}$ ms⁻², in

the second is

- (1) $\frac{10}{3}$ m (2) $\frac{19}{3}$ m (3) 4 m (4) 6 m
- 3. A ball is projected vertically up with an initial velocity. Which of the following graph represent KE of ball?

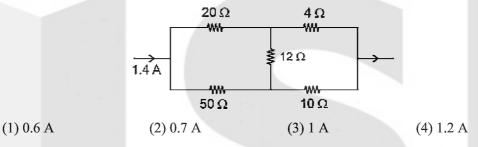
4.

A ball is projected from ground at angle θ with the horizontal. After t = 1 s, it is moving at 45° with the horizontal and after t = 2 second, it is moving horizontally. What is speed of projection of ball? [g = 10 m s⁻²]

(1) $10\sqrt{2}$ m/s (2) $10\sqrt{3}$ m/s (3) 20 m/s (4) $10\sqrt{5}$ m/s

5.	In the equation of angular displacement of a particle moving on a circular path is given a				
	$\theta = 2t^3 + 0.5$, θ is in radian and t in second. The θ angular velocity of the particle at t = 2 s is				
	(1) 16.5 rad/s	(2) 19.5 rad/s	(3) 24 rad/s	(4) 12 rad/s	
6.	Bullets of 0.03 kg ma	ass each hit a plate at a	rate of 200 bullets per	second with velocity of 50	
	m/s and reflect back v	with velocity of 30 m/s.	The average force acting	g on the plate in newton is	
	(1) 120	(2) 180	(3) 480	(4) 245	
7.			-	orizontal. The coefficient of	
			0.8. If the frictional forc	e on the block is 10 N, then	
	mass of block (in kg)				
	(1) 2.0	(2) 2.5	(3) 4.0	(4) 1.5	
8.		-	_	eration of 4.9 ms^{-2} , and then	
		eration of 4.9 ms ^{-2} . The	e ratio of tensions in first	st case to second cases is (g	
	$= 9.8 \text{ ms}^{-2}$)				
0	(1) 2 : 1	(2) 1 : 1	(3) 3 : 1	(4) 1:3	
9.			5 x = 3 m under the effe	ect of the force $F = 3x^2 - 2x$	
	+ 5 N. Work done in 1 (1) 24 J	(2) 38 J	(3) 18 J	(4) 28 J	
10.	• •		(3) 18 3	(+) 20 3	
10.	 0. In stable equilibrium position, a body has (1) Maximum potential energy (2) Minimum potential energy (3) Minimum kinetic energy 				
	. ,	nor minimum potential	energy		
11.	Two bodies of mass 10 kg and 2 kg are moving with velocities $(2\hat{i} - 7\hat{j} + 3\hat{k})$ m/s and				
	$(-10\hat{i}+5\hat{j}-3\hat{k})$ m/s	respectively. The veloc	ity of their centre of ma	ss is	
	(1) $2\hat{i}$ m/s	(2) $2\hat{k}$ m/s	(3) $4\hat{i} + 2\hat{j}$ m/s	(4) $6\hat{i} + 2\hat{j} - 3\hat{k}$ m/s	
12.	A flywheel of mass 5	0 kg and radius of gyrat	ion about its axis of rota	ation of 0.5 m is acted upon	
	by a constant torque of 12.5 N m. Its angular velocity at $t = 5$ s is				
	(1) 2 rad/s	(2) 5 rad/s	(3) 10 rad/s	(4) 12 rad/s	
13.	A body is released from	om height equal to radius	s R of the earth. The vel	locity of body with which it	
	will strike the earth su	irface is			
	(1) $\sqrt{2gR}$	(2) $2\sqrt{gR}$	(3) \sqrt{gR}	(4) $\sqrt{\frac{gR}{2}}$	
	V-0	(-) - V 0	(-) VO	V 2	

14.	The height at which the	he weight of an object bec	omes $\left(\frac{1}{16}\right)^{\text{th}}$ of its w	eight on the surface of earth	
	is (R is radius of earth)				
	(1) 3 R	(2) 2 R	(3) 4 R	(4) 5 R	
15.	A wire can be broken	by a load of 20 kg-wt. T	he force required to l	break wire of same material	
	with twice the diamet	with twice the diameter will be			
	(1) 20 kg-wt	(2) 60 kg-wt	(3) 90 kg-wt	(4) 80 kg-wt	
16.	If work done in increa	asing the size of rectangul	lar soap film with din	nensions 8 cm \times 3.75 cm to	
	$10 \text{ cm} \times 6 \text{ cm} \text{ is } 2 \times 1$	0 ⁻⁴ J. The surface tension	of film in newton per	meter is	
	(1) 2.1×10^{-2}	(2) 1.65×10 ⁻²	(3) 3.3×10^{-2}	(4) 4.2×10^{-2}	
17.	Two rain drops reach	n earth from clouds with	different terminal ve	elocities having ratio 9 : 4.	
	Then the ratio of their	volumes is			
	(1) 3 : 2	(2) 27 : 8	(3) 64 : 81	(4) 8 : 27	
18.	In a thermodynamic	process, pressure of fixed	mass of a gas is cha	nged in such a manner that	
	the gas releases 20 J	of heat and 8 J of work is	done on the gas. If i	nitial internal energy of the	
	gas was 40 J, what wi	ll be final internal energy?	2		
	(1) 18 J	(2) 28 J	(3) 52 J	(4) 32 J	
19.	Choose the correct statement.				
		(1) Internal energy is a path function, while heat is not			
(2) Heat is a path function, while internal energy is not					
		rnal energy are not path fu			
		rnal energy are path funct			
20.	An ideal engine whose efficiency is 40%, receives heat at 500 K. If required efficiency is 50%,			required efficiency is 50%,	
	-	re for the same exhaust ter			
21	(1) 800 K	(2) 700 K	(3) 400 K	(4) 600 K	
21.	The root mean square speed of molecules of a gas is 1260 m/s. The average speed of the gas				
	molecules is (1) 1161 m/s	(2) 1671 m/s	(3) 912 m/s	(4) 1040 m/s	
22.				requency of 4 hertz and an	
22.		the mass of the object is 2		- UUIM	
	(1) 40 N/m	(2) 160 N/m	(3) 126 N/m	(4) 109 N/m	
23.					
	A heavy rope is suspended from rigid support. A wave pulse is set up at the lower end. Then(1) The pulse travels with uniform speed(2) The pulse will travel with increasing speed				
		vel with decreasing speed		ot travel through rope	
			S & Constant La constant de la const		

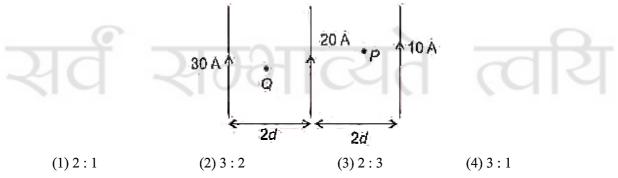

- 24. Two waves of wavelength 50 cm and 51 cm produced 12 beats per second. The velocity of sound is
 - (1) 306 m/s (2) 333 m/s (3) 342 m/s (4) 356 m/s

25. A positive charge is moved from low potential point A to a high potential point B. Then the electric potential energy

- (1) Increases (2) Decreases
- (3) Will remain same (4) Nothing definite can be predicted

26. A parallel plate capacitor is charged and then charging battery is disconnected. If the plates are now pulled apart with insulated handles

- (1) The capacitance increases
- (2) Potential energy decreases
- (3) Potential difference increases
- (4) Charge and potential difference both remains same
- 27. In the shown circuit, current through 4 Ω resistor is



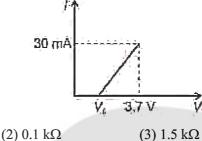
28. Two identical cells connected in series send 10 A current through a 5 Ω resistor. When they are connected in parallel, they send 8 A current through same resistance. What is internal resistance of each cell?

(3) 1.5 Ω

(4) 1.9 Ω

- (1) 2.5Ω (2) 1Ω
- 29. Three long wires, carrying current 10 A, 20 A and 30 A are placed parallel to each other as shown. Point P and Q are in midway of wires. What is ratio of magnetic field at P to the Q?

30. A 0.8 m long solenoid has 800 turns and has a field density of 2.52×10^{-3} T at its centre. What is current in the wire?


(1) 3 A (2) 2 A (3) 1 A (4) 4 A

31. A charge particle having charge 2 C is thrown with velocity of $(2\hat{i}+3\hat{j})$ m/s inside a region having $\vec{E} = 2\hat{j}$ N/C and magnetic field $5\hat{k}$ T. The Lorentz force acting on particle is

(1) $(30\hat{i} - 16\hat{j})N$ (2) $(15\hat{i} + 20\hat{j})N$ (3) $(15\hat{i} - 30\hat{j})N$ (4) $(30\hat{i} + 15\hat{j})N$

32. The relative permeability of iron is 5500. What is its magnetic susceptibility?

- (1) 1 (2) 5499 (3) 5501 (4) 4999
- 33. The resistance of a silicon junction diode, whose V I characteristics is as shown in figure is (V_k = 0.7 V)

(1) 0.2 k Ω

2 (4) 3.7 kΩ

34. The horizontal component of earth's magnetic field at a place is 4×10^{-4} T and dip is 45°. A metal rod of length 20 cm is placed in north south direction and is moved at constant speed of 5 cm/s towards East. What is e.m.f. induced in the rod?

(1) 4×10^{-6} V (2) 2×10^{-4} V (3) 4×10^{-5} V (4) 3×10^{-6} V

35. According to Lenz's law of electromagnetic induction

(1) The induced emf in the direction opposing the change in magnetic flux

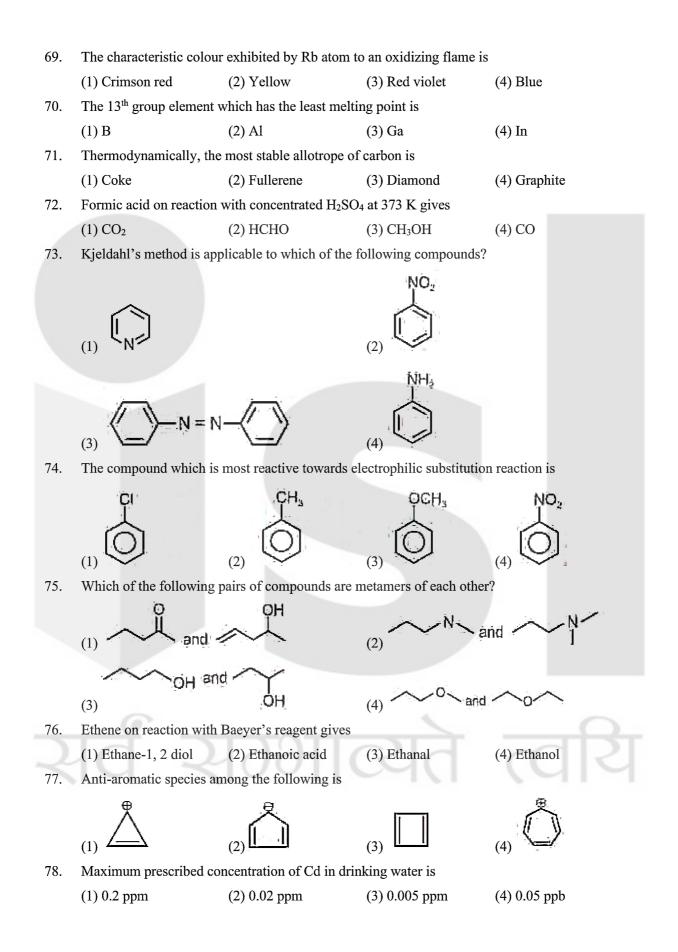
(2) The relative motion between coil and magnet produces no change in magnetic flux in any case

(3) Only magnet should be moved towards coil

(4) Only the coil should be moved towards magnet

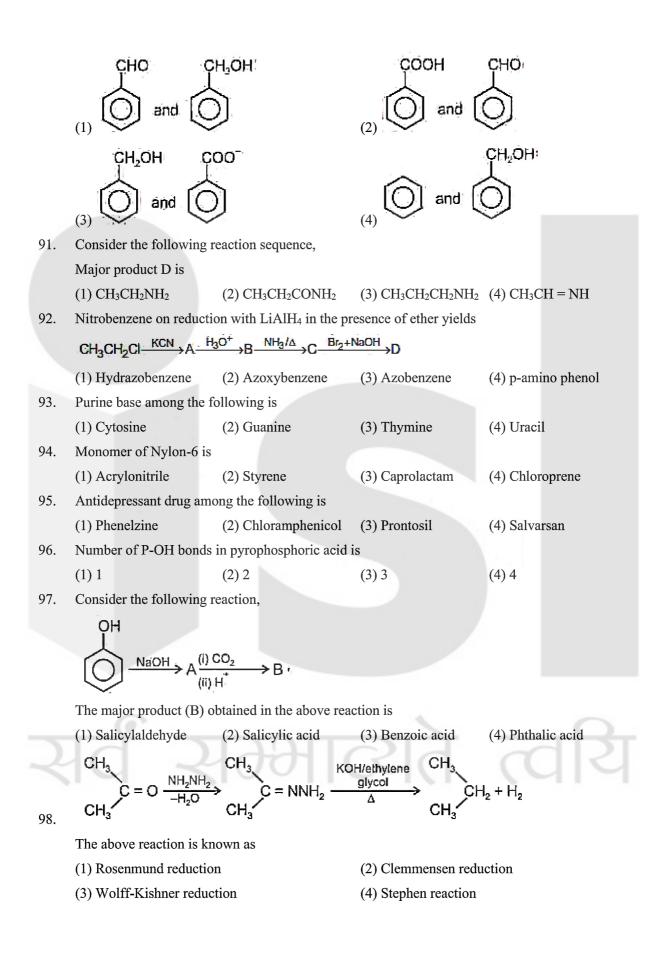
SECTION-B

36. A coil has resistance of 30 ohm and inductive reactance 20 ohm at 50 Hz frequency. If an ac source of 200 V, 100 Hz is connected across the coil, current in coil will be


(1) 2 A(2) 4 A(3) 5 A(4) 6 A37. A plane electromagnetic wave $EZ = 100 \cos (6 \times 10^8 t + 4x) V/m$, where x is in metre and t is in
second. propagates in medium, what is refractive index of the medium?
(1) 1.2(2) 2.0(3) 1.4(4) 1.5

38. If two coherent waves are represented by $y_1 = 4\sin \omega t$ and $y_2 = 3\sin (\omega t + \pi/3)$ interfere at a point, the amplitude of resulting wave will be about

	(1) 7.2	(2) 6.1	(3) 5	(4) 12	
39.	2. The fringe width in Young's double slit experiment increases when				
	(1) Wavelength decrea	ases			
	(2) Distance between	sources and screen decre	ases		
	(3) Source slit is move	ed closer to slit openings			
	(4) Distance between	slits plane and screen inc	creases		
40.	A defective eye canno	t see close objects clearly	y because their image i	s formed	
	(1) On the eye lens		(2) Between eye ler	(2) Between eye lens and retina	
	(3) On the retina		(4) Beyond retina		
41.	Rainbow is formed du	Rainbow is formed due to			
	(1) Scattering and refraction		(2) Scattering and r	(2) Scattering and reflection	
	(3) Internal reflection and dispersion (4) Dispersion alone			e	
42.	When light of maximu	um wavelength 300 nm	falls on a photoelectric	emitter, photoelectrons are	
	liberated. For anothe	er emitter however lig	ght of maximum wa	velength 600 nm causes	
	photoelectric emission	n. The ratio of work func	tions of first emitter to	second emitter will be	
	(1) 1 : 2	(2) 2 : 1	(3) 1 : 1	(4) 1 : 4	
43.	The Boolean equation	for the circuit as shown	in figure is		
		A>>)-oY		
	(1) A·B	(2) $\overline{A} + B$	(3) A B	(4) A + B	
44.	After one alpha partic	le emission and one β^- pa	article emission from a	nucleus	
	(1) Mass number redu	ces by 5	(2) Atomic number increases by 1		
	(3) Mass number redu	-	(4) Atomic number	reduces by 1	
45.	To measure light inter				
	(1) LED with forward bias		(2) LED with reverse bias		
	(3) Photodiode with forward bias		(4) Photodiode with reverse bias		
46.	Two trains 101 m and 99 m in length are running in opposite direction with velocities 54 km				
		time they will completely			
	(1) 20 s	(2) 8 s	(3) 10 s	(4) 16 s	
47.	-	_	le of radius r with critic	cal speed. The difference in	
		e top and the bottom is			
	(1) 2 Mgr	(2) 4 Mgr	(3) 6 Mgr	(4) 3 Mgr	
48.				ngth is made one fourth of	
	the original length, the	e angular frequency beco	omes		


	(1) $\frac{\omega}{2}$	(2) 2 <i>\omega</i>	(3) 4 <i>w</i>	(4) <i>ω</i>
49.	2	bits of two sotallitas A	and R of the earth are	4D and D respectively. If
49.	The radii of circular orbits of two satellites A and B of the earth, are 4R and R, respectively. If speed of satellite A is 2V, then the speed of satellite B will be			
	speed of sutenite II is 2			V
	(1) 2V	(2) $\frac{V}{2}$	(3) 4 V	$(4) \frac{V}{4}$
50.	If the distance between	successive compression	ons and rarefaction in a	a sound wave is 2 m and
	velocity of sound is 360) m/s, then the frequency	y is	
	(1) 180 Hz	(2) 45 Hz	(3) 120 Hz	(4) 90 Hz
		CHEMIS	STRY	
		SECTIO		
	Choose the correct answ			
51.			2.8 L of Cl ₂ (g) at STP	, the percentage purity of
	MnO_2 is (atomic mass of		-(0)	
	$MnO_2 + 4HCl \rightarrow Mnt$	$Cl_2 + Cl_2 + 2H_2O$		
	(1) 80%	(2) 75%	(3) 33%	(4) 50%
52.	Which of the following			< /
	(1) 14 g of N ³⁻ ion	(2) 4 g of Ca^{2+} ion		(4) 2.3 g of Na ⁺ ion
53.	The radii of 2 nd Bohr or	bit of Be ³⁺ ion is		
	(1) 26.45 pm	(2) 52.9 pm	(3) 79.35 pm	(4) 105.8 pm
54.	For hydrogen atom, the	correct order of energy	of orbitals is	
	(1) $4f > 4d > 4p > 3d > 3p > 3s$ (2) $4f = 4d > 3d > 4p$			p > 3p > 3s
	(3) $4f > 4p > 4d = 3d >$	3p > 3s	(4) $4f = 4d = 4p > 3d$	l = 3p = 3s
55.	If the value of ionisation	n enthalpy of K is x eV	then the value of electro	on gain enthalpy of K ⁺ is
	(1) –x eV	(2) –2x eV	(3) +2x eV	$(4) -\frac{1}{2} \times eV$
56.	The correct order of ion	io rodii io ronnocontod ir		2
50.	(1) $O > O^{-} > O^{2-}(2)$ Al		(3) $S^{2-} > K^+ > C^{1-}$	(4) $Mg^{2+} > Na^+ > N^{3-}$
57.	Which of the following		isostructural?	(+) wig > wa > w
57.	_		1000010000000000	
-	(1) H_2O and SO_3	(2) I_3^- and XeF ₂	(3) NH_3 and BF_3	(4) SF_4 and XeF_4
58.	The species which does			
50	(1) Li_2	(2) C_2	(3) H ₂	(4) He_2
59.	The number of σ and π	bonds in the following	compound respectively	are

$CH_2 = CH - C - CH_2 - CN$					
	(1) 12 and 3 (2) 11 and 3	(3) 12 and 4 (4) 11 and 4			
60.). The temperature at which rms velocity of CH_4 will be same as that of O_2 at 27°C is				
	(1) 150 K (2) 450 K	(3) 600 K (4) 900 K			
61.	61. van der Waals constant (a) for the gases A, B, C and D are 1.25, 3.29, 4.28 and				
	respectively. The gas which is most easily liquefied is				
	(1) A (2) B	(3) C (4) D			
62.	For the reaction, $CCl_4(g) + 2H_2O(g)$	\rightarrow CO ₂ (g) + 4HCI(g) at constant temperature,			
	$\Delta H - \Delta E$ is				
	(1) $-RT$ (2) RT	(3) –2RT (4) 2RT			
63.	Four monobasic acids A, B, C and D have	their respective $\Delta_{neut} H^{\circ} \circ$ values as – 11.5, –7.5, –			
	12.4 and – 8.9 kcal/mol. Which of the follow	ving acids has the highest pKa value?			
	(1) A (2) B	(3) C (4) D			
64.	For the reversible reactions,				
	$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$				
	Which of the following does not affect the en	quilibrium state?			
	(1) Increase in the volume of the container	(2) Decrease in the volume of the container			
	(3) Addition of CaO(s)	(4) Addition of inert gas at constant pressure			
65.	Conjugate acid and conjugate base of HPO_4^{2-} respectively are				
	(1) $H_2PO_4^-$ and $H_3PO_4^-$	(2) $H_2PO_4^-$ and PO_4^{3-}			
	(3) H_2PO_4 and PO_4^{3-}	(4) PO_4^{3-} and $H_2PO_4^{-}$			
66.	Which of the following is not a disproportion	nation reaction?			
	(1) $\operatorname{Cl}_2 + \operatorname{OH}^- \longrightarrow \operatorname{Cl}^- + \operatorname{ClO}_3^- + \operatorname{H}_2\operatorname{O}$	(2) $P_4 + OH^- + H_2O \longrightarrow PH_2 + H_2PO_2^-$			
	(3) $S_8 + OH^- \longrightarrow 4S^{2-} + 2S_2O_3^{2-} + 6H_2O_3^{2-}$	$(4) F_2 + OH^- \longrightarrow F^- + OF_2 + H_2O$			
67.	The oxidation state of central bromine atom in Br ₃ O ₈ is				
	(1) +6 (2) +3	(3) +4 (4) +5			
68.	Which of the following is a method of labora	atory preparation of dihydrogen?			
	(1) Electrolysis of acidified water using plati	num electrodes			
	(2) Reaction of granulated zinc with dil hydr	ochloric acid			
	(3) Reaction of steam on hydrocarbons or coke at high temperature in the presence of catalyst				
	(4) Electrolysis of brine solution				

79.	Packing efficiency of fcc unit cell is					
	(1) 74%	(2) 68%	(3) 52.8%	(4) 26%		
80.	Which of the following colligative property is used to determine molar masses of proteins?					
	(1) Relative lowering of vapour pressure (2) Elevation in boiling point			ng point		
	(3) Depression in freezing	ng point	(4) Osmotic pressure			
81.	Which of the following metal has the highest conductivity at room temperature?					
	(1) Na	(2) Cu	(3) Ag	(4) Au		
82.	Which of the following	quantities changes on ad	dition of a catalyst du	ring a chemical reaction?		
	(1) Equilibrium constan	t (2) Activation energy	(3) Gibbs energy	(4) Enthalpy		
83.	For the coagulation of r	nethylene blue sol, the f	locculating power of v	which of the following ion		
	is maximum?					
	(1) PO_4^{3-}	(2) Al ³⁺	(3) Cl ⁻	(4) Ba ²⁺		
84.	Select the incorrect state	ement about electrolytic	refining			
	(1) Impure metal is made to act as anode (2) Pure metal is used as cathode			d as cathode		
	(3) Zinc can be refined using this method (4) Impurities deposit as cathode mud			it as cathode mud		
85.	The compound which has the highest reducing character among the following is			llowing is		
	(1) H ₂ O	(2) H_2S	(3) H_2Se	(4) H ₂ Te		
	SECTION-B					
86.	The ion which has the h	ighest magnetic moment	is			
	(1) Sc^{3+}	(2) Ni ²⁺	(3) Ti ³⁺	(4) Zn^{2+}		
87.	The co-ordination complex which shows linkage isomerism is					
	(1) $[Co(NH_3)_5NO_2]^{2+}$	(2) $[Co(NH_3)_6]^{3+}$	(3) $[Co(NH_3)_5Br]^{2+}$	(4) $[Cr(H_2O)_5Cl]^{2+}$		
88.	The alkyl halide which is most reactive towards dehydrohalogenation is					
	(1) R-F	(2) R-Cl	(3) R-Br	(4) R-I		
89.	9. The alcohol which reacts fastest with Lucas reagent is					
		ОН		(4) OH		
	(1)	(2) • •	(3) OH	(4) UH		
	CH3					
		>A				
90.	(II) H40					

B and C are

99. If the standard electrode potential for a cell A²⁺(aq) + 2B(s) → A(s) + 2B⁺(aq) is 1.9 V, then the standard Gibbs energy for the reaction is

3.8 F J/mol
-1.9 F J/mol
-3.8 F J/mol
-7.6 F J/mol

100. Most basic compound among the following is

La(OH)₃
Eu(OH)₃
Eu(OH)₃
Eu(OH)₃

सर्व सम्भाव्यते त्वयि